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Abstract

The geometry of the circular normal distribution, CN(u, k) and
unconditional tests for p are described. For k known, the
CN(u, k) forms a curved exponential family. The unconditional
locally most powerful test proposed on the basis of the statis-
tical curvature is shown to possess desirable optimal properties
and good power performance even for small sample sizes. Tests
based on the maximum likelihood estimator and the likelihood
ratio, are also considered. For x unknown, it is shown that the
unconditional asymptotically locally most powerful or Neyman's

C,-test can be applied and it reduces a very simple form.
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1. Introduction and Summary

The aim of this paper is two-fold. First, it is in the spirit of the differential ge-
ometry in statistical inference as exposed by Amari (1985), Barndorff-Nielsen, Cox
and Reid (1986), and others and elucidates the geometry for the circular normal
distribution, CN(u, k), and related tests. Secondly, we are interested in uncondi-

tional tests for the mean direction g as opposed to the existing conditional ones.
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Locally most powerful (LMP) and asymptotically LMP, Neyman's C,, tests are con-
structed for the cases when &, the concentration parameter, is known or unknown
respectively, their properties aré investigated and numerical and theoretical com-
parisons are made with some standard tests. In the former case, we show that the
resulting model is a member of the curved exponential family (CEF), a submanifold
imbedded in the space S of the manifold of the CN family. We consider the rigging
ancillary submanifold, obtain its metric tensor and thereby demonstrate that the
ancillary family is orthogonal. We obtain the test based on the maximum likelihood
estimator (MLE) and the LMP test for the one-sided case and the likelihood ratio
test (LRT) for the two-sided case. We study the geometry of these tests and that
of the associated ancillary families. Efron’s (1975) statistical curvature is presented
to justify the choice of the LMP test. Exact cut-off points are tabulated and the
power is also computed. The power performance is quite favorable as compared to
the conditional test given in Mardia (1972). The test is admissible, has a monotone
power function and is consistent. The geometric quantities evaluated earlier can be
used to study the asymptotic behavior of the test. In particular, we use statistical
curvature to give the third order power loss of the LMP test, while that of the test
based on the MLE and the LRT can be similarly obtained. Further, asymptotic
comparison done by Amari (1985, Sec. 6.2) is evaluated with exact computations,
to confirm the impression that large sample size (n > 30) would be necessary to
make LMP possibly inferior to LRT (and hence conditional tests approximately).
We consider next the case of x unknown. No similarity or useful invariance holds.
As opposed to a conditional test, we proceed in the spirit of the unconditional test
to generalize the LMP test to the asymptotically LMP or C,- test of Neyman
(1959). We demonstrate that the condition (8) of Moran (1970) holds and so a
reduced simple form is available for the asymptotically LMP test. The test is also

consistent.
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2. Geometry of the CN distribution
2.1 x unknown.

Let aq,...,an be a random sample from CN(y, &) i.e. from the p.d.f.

@) = [rlo(x))~" expls cos(a — p),

(2.1)
0<a,p<2r,0< k<00

It is clear that (3 cosay, Y sina;) = (C,S), say, is sufficient for (u,x) and

(2.1) is a member of the regular exponential family. Now, we may rewrite fla)

il

exp[0z; — ()], where £y = cosa,z2 = sina. The natural parameters are 6 =
Kk cos p, 82 = Ksinp. The expectation parameters given by v; = E(X;) = 0;4(0)
are v, = pcosp, vy = psinp, where p = I1(k)/lo(k) = A(k), say. The mean
direction p and the concentration parameter s are frequently used as the parameter
v = (v4,92),7! = 7% = & to specify the family § = {CN(u,k)} of the circular
normal distributions. The parameter space is then the infinite open-top rectangle
in the first quadrant with its base on 0 to 2m. The natural basis {01} is 0 =
8/0u,8y = 0/0k. The tangent vector Ty is spanned by these vectors. We can
identify Ty, the differentiation operator representation of the tangent space with
To(l) as the random variable or 1-representation of the same tangent space. From
the log-likelihood function, !(a,~), the basis 8;1 of the 1-representation is 6il =
ksin(a — p), 020 = A(k) + cos(a — p). The space To(l) is spanned by these two
random variables, so that it consists of all the linear trigonometric functions in «

defined below whose expectation vanishes,

Tél) = {arsin(a — p) + beos(a — p) + ¢}, with ¢ = —bA(k).

One can use any of the above three parameter representations to specify the
distribution. In fact, it is easy to establish the relationship between two different
coordinate systems. For example, the Jacobian matrix of the coordinate transfor-

mation from 7 to 6 is given by,

o0v —Ksing  cosp
BY = = [ ] (2.2)

' ot KCcosp  sinp
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Let us consider the metric in the manifold of circular normal distributions.
The metric tensor g;;(y) or Fisher information matrix in the coordinate system
7 = (p, k) of the circular normal family CN(u,k) is easily calculated by using
9ij(7) = —E[0:0;1(c,7)]. The various expectations involved are computed by using
the results, (i) E'sinp(a—p) = 0, Ecosp(a— p) = I(k)/Io(k),p = 1,2, ..., (it) sin
and cos a are odd and even functions respectively, (iii) f(c) is symmetric in g and
(iv) [ 0.0} f(a)da = 0,4,5 = 1,2,.... Note that gi2(y) and ga1(y) vanish identi-
cally, since g12(y) = E[sin(a — p)] = 0. So the basis vectors 8; and 8, are always

orthogonal. Thus we get,

Result 2.1 The coordinate system < is an orthogonal system, composed of two
families of mutually orthogonal coordinate curves, y! = p = const. and 42 =k =

const. Note however that the length of §; depends on the position v, i.e.,
| &1 |2= Var [ksin(a — p)] = kA(k),

| 82 [°= Var [A(k) + cos(a — p)] = 1 — A(k)/x — A% (k).

One can now calculate the Riemannian distance between two points, i.e., two CN

distributions and the Riemannian geodesic curve connecting two CN distributions.

2.2 Kk known.

Let s be known, say equal to 1. Note that the model M consisting of the
CN(f,1) is a submanifold imbedded in the space £ of the circular normal distribu-
tions CN (B, k) with the coordinate system 6 = (8, k). From (2.1), it is clear that
the CN family is a particular member of the regular exponential family and our
CN(B,1) can be rewritten as g(z,u) = f{z,0(u)} where, 8(u) = (6*(u),0%(u)) =
(cosu,sinu). Since this gives a smooth imbedding in the space of the exponential
family, the family M = {¢(z,u)} is a (2,1) CEF. For definitions and discussions on
CEF see e.g., Efron (1975). The family M forms a one-dimensional submanifold,
ie. a curve, imbedded in the two dimensional manifold £. It is a unit circle in
the 6-plane of the natural coordinates 8, since (u) satisfies (')% + (62)% = 1. If
we use the expectation parameter 17 = (11, 7,) the n-coordinates n(u) of the distri-

bution specified by u are, 71 = A(1) cosu,ns = A(1)sinu. Hence, the family M is
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represented also by a circle, ¥ +n3 = A%(1), centered at 0, in the n-plane of the

expectation coordinates. In terms of the expectation parameter, the tangent vector

Bgi of M(a=1) is
B,; = dni/du = A(1)[—sinu, cosu)

and a metric in £ is defined by the tensor g (u) = E{0;10;1}. Now,
| = —In2r — Ino(k) + K cosacos p + Ksinasin

_ In2m — InIo(A=2(0)) + (A (o) {mu cos @) + (A7 (4mesin @)}/, p* = i + 3.

In terms of the natural parameters,

| = —In2r — InIo(((8")% + (92)2)1/2) + 0  cosa+ 6%sina

dl/88* = —A(k) cos pu + cosa, and 01/96* = —A(k) sin i + sin o

So, 11 = E(al/aol)2 = —A%(k) cos? p + [Io(k) — Iz cos 2u)/21o(k),

g2 = E(81)86%)? = — A (k) + [o(x) — T2 cos 2u)/210(K),
and g12 = E(81/06" - 81/06%) = [ A%(k)sin2p + E(sin 20)]/2
= —(1/2)A%(k) sin 2.
This gives the metric g;; defined in £, from which the metric gob of M is given
by ga» = BiBigi; where 6" = 6 (u) = cosu and 6% = 62(u) = sinu. Then,

Bi(u) = 8,6 (u) = [—sinu, cosul, (a = 1,4 = 1,2) and hence,

gab = g11 5in® u + gaz 08> U — 2g1 SN U COSU.

A vector orthogonal to M, say n(u) is such that, nBjg;; = 0. Normalize nt to Bi(u)
such that BiBlg; = 0 and BiBlg;; = 1. Given n' satisfying the orthogonality
condition, this orthonormalization with respect to the metric gi; is achieved by

taking Bi(u) = [ninfgi;] /20,

[Fig. 2.1 to be placed here]
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Let us attach a one-dimensional submanifold D(u) of £ to each point u such
that D(u) transverses M at the point 6(u) or n(u). Here we attach a straight line
D(u) at each n(u) in the n-coordinate system. The equation of D(u) is,

m = A(1) cosu + [A(1) cosulv, 12 = A(1)sinu + [A(1) sin u]v,

ie. D(u) = {n|n,m:} where v is the parameter specifying points on D(u). Here v
can be regarded as a coordinate on the line D(u), where the origin v = 0 is chosen
at the intersection of M and D(u).

The imbedding ¢ = 0(u) is given by 6*(u) = u,6%(u) = 1, so that the Jacobian

matrix B:(u) of the above coordinate transformation is

B (u) = 06" /ou® = (1,0),a=1,i = 1,2.

We attach to each point u € M, a rigging ancillary submanifold R(u) as shown in
Fig. 2.1, i.e. R(u) consists of the CN distributions with fixed mean 8 and varying

K.
[Fig. 2.2 to be placed here]

Let v = k =1 be the coordinate of a point CN (8, k) in R(u). Then (u,v) forms
a coordinate system of £ with the coordinate transformation 61 (u,v) = u,6%(u,v) =

v + 1 and the Jacobian matrix,

g2y _[10
og> 01

where £ = (u,v) and aaBZa = 0 holds. The metric tensor g,g is given by,

i . tl(KJ) 0
9ap = By Bhgij = )
0 ta2(x)

where t;(x),7 = 1,2, are given below and g;; =< 9;,8; >= E[8;18;l]

g11 = E[r?sin®(a ~ B)] = kA(k) = t1(x),

922 = Efcos®(a — B) + A% (k) — 2A(k) cos(a — B)]
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=1- A(k)/k — A%(K) = ta(x),

and g1 = E[-kA(k)sin(a — B) + s sin(a — ) cos(a ~ )] = 0.

Let a, b, ¢, standing only for 1, be indices for u and &, a, pt, standing only for 2,
be indices for v. So, gax = 0 and this implies that the metric (Fisher information)
of M is gap(u) = t1(1) where we put v =0, ie. k=1 and the metric of R(u) on
M is geA(u) = t2(1) and d, and O, are mutually orthogonal, g.x(u) = 0. Thus we

have,

Result 2.2 The ancillary family is orthogonal. The a-connection Pgag,y(u) in the

associated coordinate system £ = (u,v) is,

l—-«
2

F(D‘)

ape(®) = E[{0.00l(z,u) + BalByl}Ocl]

:F(l) l1—«a

abe

+ Tobe, where Tope is a third order tensor.

Now, 8, = 01/88 = sin(a — ), 02 = 821/8p* = —k cos(a — ). Hence,

[\(0‘)

abc

(u) = E[—&? cos(a — B) sin(a — B) + 2 k3 sin® (a—-p/)]=0.

Since 8, = 01/0k = k = —A(k) + cos(a — B), we get similarly,

l-«

o

(u) = B[~ Al(k){~A(k) + cos(a = B)} + {cos(a — B) — A(k)}*]

= [(1 — a)/4Iy(x)][2E cos® (e — B) — BA(k)(1 + Iz(k) + 3A%(k)I; (k) — A3(k))]

# 0 for any «, identically in .

l'\(a)

abk

(u) = E[—A(k) + cos(a — B)}{~r cos(a — ) + ((1 - a)/2)k? sin®(a - B)}]

= (1/2Io(x))26A(R) 1 (5) — k(1 + Ia(x)) — (1 — a){x*A(k)(1 - I2(x))/2
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+(l1(k) = £(1 = Ir(k)) + £(1 = I2(x))/2)}],
where E sin?(a — 8) cos(a — 8) may be obtained, for example, by using the identity,
[ 8583 f()da = 0. Thus, e (u) # 0 for any a, identically in . Hence, H(%) (uw) =

abk abk

1'\(0‘)

obr (1), which gives the imbedding curvature of R(u) in L at § = 6(u) does not

vanish for any «, identically in v = k—1. However, the Riemann-Cristoffel curvature
vanishes identically, since every one-dimensional manifold must be curvature-free.

The above observations give,

Result 2.3 The model M is not an a-flat submanifold in £, is not an a-geodesic
and, in particular, is not a 0-geodesic. However M is itself a-flat. The auxiliary
submanifolds R(u) are a-flat for any a. The coordinate u of M is a-affine for any

o, while the coordinate v of R(u) is not a-affine for any a.

3. CEF and LMP test

Consider the LMP test for Hp : 6 = 6y against one-sided alternatives. In the
absence of a uniformly most powerful test in a curved exponential family (CEF), a
locally most powerful test is an attractive choice. This test maximizes the power at
"local” alternatives, i.e. for small departures of the parameter from the null value.
However, Chernoff (1951) exhibits that such tests can sometimes have undesirable
performance for non-local alternatives. Efron (1975) suggests that with a value of
the statistical curvature 730 < % one can expect linear methods to work “well”. In
repeated sampling situations, the curvature m'ygo based on m observations satisfies,
mYe, =178, /M = "4, /m and hence one can determine the sample size which reduces

the curvature below 1/8.

4. Tests for u with x known

Let o ~ CN(B,1), i.e. k is assumed to be known, equal to 1. We would like to
test Hy: =0 agﬁinst H, :p5>0.

4.1 A Conditional test

Mardia (1972), noting that there is no uniformly most powerful (UMP) test
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against one-sided alternatives, has proposed the test based on the best critical
region (BCR) for testing against a simple alternative Hy : 8 = 8/ > 0. This test
against a single specific alternative is of course quite restrictive. Also, the test is
a conditional test (based on Fisher's principle of ancillarity). Let R and & denote
the length and the direction of the vector resultant i.e., C = Rcos@,S = Rsina.
Then given R = r the most powerful test for Ho : # = 0 against H; : 8 = f/ has the
critical region w, w:sin(@ — B//2) > D, where @ ~ CN(B,r) and D is a constant
chosen to satisfy the level condition. For further details, see Mardia, pp.138-139.
Some power values are given in Table 4.1. Note that there is minimal change in
power at & as 3/ changes and is almost negligible for lage r . For example, the blocks
of power values are identical at r = 7 for various 8 and the maximum powers i.e.,

at 6 = f1, were seen to differ only in the eighth decimal place.
[Table 4.1 to be placed here]

4.2 Likelihood ratio test

The LRT reduces to w : R — C > k when fi > po = 0. Then,
= j to(r)hn{lo)}"dr
0

where to(r) = (1/2m) f: exp(r cos a)de, a = 2w —cos™(k/r+1) and b = cos™! (k/r+
1)mod2r. Power at f is obtained by replacing a and b above by, o' = 27 —
cos~(k/r +1) — B and b = cos™!(k/r + 1) — B mod 27. Comparison with LMP
shows that LMP is superior in the more reasonable range of 0 to 7/2, almost up
to /2. Further, Amari’s (1985, p. 182) result with his ¢ = 1.2 shows that for
B2 t\/ng where g = A(1), in actual computation, requires quite large n (even more
than 30) for the approximation to work, i.e. LRT to be superior to LMP which is
discussed below. With ¢ > 2 however, the LMP test still dominates in a wide range.
For example, t = 1.2,n = 7 gives f = .6788 while ¢t = 1.2 gives § = 1.1314 while
for n = 30, the values are § = .3279 and 8 = .5465. Table 4.4 exhibits such power

comparisons.

4.3 Locally most powerful test
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In practice we will be usually interested in testing against alternatives close to
the null, say 0 < # < 7/2. Here we consider such one-sided composite alternatives.
Note that the given distribution is a member of (2,1) CEF. A UMP test does not
exist and a LMP test is then a reasonable candidate. However, in view of the
comments in Section 3, the curvature of CN(8,1) can be illuminating. It follows
that at # = 0, for any &,1¢(k) = A(k)/k(A'(k))?. In particular, let k = 1. Then
for n observations, ,v3(1) < 1/8, we need n > 14.266, i.e. n = 15. Thus, according
to Efron’s rule, a sample size of only 15 will suffice to reduce the curvature below
the ciritical value and to expect the LMP test to work “well”. Such a sample size,
in practice, should be easily available. The LMP test, by definition, has the critical

region w,

w : X0lnf(a;)0B|g=0 > K, or w: Rsina > K, i.e. w: S > K, (4.1)

where K is a constant chosen to satisfy the level condition. The exact cut-off points
are given in Table 4.2.

It is interesting and instructive to look at the geometry of the LMP test (Fig.
4.1). Recall from Section 2.2 that the family M forms a circle centered at (0,0).
Now, the ancillary family R(u) is given by, A(n) = c. i.e. 2 = ¢. The straight line
R(u) intersects M at two points u_ and uy for ¢ < 1 and at one point u* =1 for

¢ =1. A parametric representation independent of ¢ seems infeasible.

Fig. 4.1 to be placed here

Result 4.1 The LMP test is an unconditional test, is unbiased, has monotone power
function, is consistent and is admissible - all globally for 0 < 8 < /2.
Proof: The first property is obvious from (4.1). Since 4 is a location parameter,
monotonicity and hence unbiasedness follow e.g., by stochastic ordering. Consis-
tency is easy to establish and admissibility is a consequence of the uniqueness of
the non-randomized LMP critical region.

We next obtain the exact power of the unconditional LMP test and compare
its performance, pointwise, against the corresponding conditional (most powerful)

tests given in Mardia (1972). An overall comparison may be obtained by using
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average power, averaged over the conditioning variable or looking at the power
envelope. A general comparison may also be made by evaluating the deviations of
the unconditional power from the maximum and minimum powers corresponding
to the values of the conditioning variable. From this comparison in Table 4.3, the
performance of the LMP test looks quite encouraging.

To obtain the cut-off points, note that,

P(Rsin&ZK | Ho) =f P(Rsin&ZK | R =r, Ho)pr(r)dr
0

= /On P(a € w, | Ho)pr(r)dr, (42)

where w, = arc[{(r/2 — &), (7/2 + ér)}(mod2r)], 6, = cos™(K/r). But, & | (R =
r) ~ CN(B,k = 1), i.e. CN(0,r) under Ho. Also, pr(r) = {Io(1)} " I,(r)ha(r),
where, hn(r) = 7 [° uJF(u)Jo(ru)du,0 < r < n. Some values of h,(r) for various
r , depending on n, is given in Greenwood and Durand (1955) and some extensive
tables are available from SenGupta and Sastri (1988). An iterative technique, e.g.,
the bisection method, was used to obtain K and the cut-off points are given in Table
4.2.

To compute the power, note that, 3 is a location parameter. So, for 8 = g1 >
0,(a— B0 | (R=r1)~CN(0,r). Then,

Power (8/) = P(Rsina > K | /) = /n P(& € wr | B = 0)pr(r)dr,
0

where wt, = arc[{(r/2 — &, — B/), (w/2 + 6, — B)}(mod) 2]. Given K, power can be
obtained through numerical integration. We briefly discuss below the computational
procedures.

(i) Case 1. n large (> 10). For large n we have 20 tabulated values for hn(r) from

Greenwood and Durand. We use the method of bisection. We compute for every

r,r = 0.5(0.5)10.0,

7 /2+6(i)
ti(r) = (1/2m) exp(r cos a)de, 6(i) = cos™ (K (5)/r),i=1,2.
m/2—-6(%)
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We started with §(1) = 7/30 and §(2) = 7/2 and used NAG subroutine D01 GAF

to compute ¢;(r) and also G;,

Gi= P () (To()}"dr, i=1,2
1]

until the convergence was obtained for some §(3) = 4, say, or equivalently. K () =K.

To compute the power, using D01 GAF again, we calculated for r = 0.5(0.5)10.0,

/246, —p1

ti(r) = (1/21r)/

exp(r cos a)da.
w/2—8,—B1 o

Power (Br) = (1/2m) /on _t(r)hn(r){I(j(l)}—ndr;

(i) _Case 2. n small. Here the tabulated values being small in number, we use
Gaussian quadrature and IMSL subroutine DCADRE to compute hy,(r) - h,(r) was
computed through a standard iterative technique until convergence was achieved
for the varying upper limit. The IMSL subroutine MMBSJ0 was used. Using these
values of h,(r), computations were then done exactly as in Case 1.

Some cut-off points are given in Table 4.2 while certain power values are tab-
ulated in Table 4.3. Table 4.1 gives the powers for the best test for Hj against a
single value for the alternative. Comparisons of the performances of the LMP test
and this restrictive test can now be made as was indicated earlier. For example, for
the best test, at Hy : f/ = 10, maximum power = .1130 (for r = 7) and minimum

power = .0594 (for r = 1), while the LMP test has power .09.
[Tables 4.2 and 4.3 to be placed here]

We next consider two tests for the two-sided alternatives and explore the ge-
ometry of these tests. The small-sample optimality for these tests are not known.
However, together with the two-sided LMP test which may be derived, we present

in section 5 a large-sample higher-order power comparison of these three tests.
4.4 Test based on the MLE

It is easy to see that the MLE of £ is given by, 8 = tan~1(S/C). For testing
Hp : f =0 against H; : 8 # 0, consider the test given by, w : 8 > K; or < K. In
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terms of the coordinates n(u) = (cosu,sinu), M forms a unit circle, n? + 92 = 1,
centered at (0, 0) in S.

From the defining equation for A it then follows that the ancillary family asso-
ciated with the test T is given by the family of straight lines which pass through
the center (actually origin) of the above circle. For a given significance level, the
critical region is bounded by the pair of these lines. We introduce in each ancillary
subspace (line in this case) A(u), a local coordinate system v, which is defined as
the distance from the intersecting point of M and A(u). Then a point 5 = (ﬁl,ng)
in a neighborhood of M can be expressed in terms of the local coordinate system

(u,v) asm = (1 —v)cosu, 7z = (1 —v)sinu.

[Fig. 4.2 to be placed here]

4.5 Likelihood ratio test

We consider the problem of testing Ho : § = 0 against H; : f # 0. Let
May,. .., a,) be the LRT statistic, i.e.,

)\(ala vy an) = H?:l [f(ai)o)/f(aiaﬁ)] = exp[z CoS C&j — CQS(O[i . :B)]
i=1

—2In\ = 2[(cos[§ -1)C+ (sin 8)8) = U(C, S), say. .

Therefore, the ancillary family is given by, {U(n,n2) = k}. Now, cosf =
C/(C? + §2)!/2 and sin f = S/(C? + S%)1/2.
. 1 — 2 . S
Therefore, U(’I’]l,nz) =k= (7777??? 1) m + ﬁﬁ e =k/2
i.e.,
T = k(m + k/4). (4.3)

Thus, the ancillary subspaces are defined by the parabolas as given in (4.3). Now,
let us represent these parabolas in a parametric form. Let us consider a parabola
A(w) : n2 = k(m + k/4), which intersects the unit circle M (our family of CN
distribution) at the point Q. So, coordinate of Q is (cosu,sinu). Let P be any
point on A(u) . Let the coordinate of P be (m,n2). Let PNLOX and OP = z.
Let p correspond to the value of MLE for n = (C,8), ie. LPON = p. We will
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express the coordinates of P in a parametric form where p is the parameter. Clearly,

71 = x cos p, N2 = x sin p. Now, by the property of a parabola,

t=k/24+m =k/2+ zcosp, ie., z(1 — cosp) = k/2. (4.4)
Now, from (4.3), as (cosu, sin u) is a point on A(u), we have, sin® u = kcosu+k2/4,
Le., taking positive sign, k = 2(1 — cosu). Then from (4.4), z(1 — cosp) = k/2 =
(1 —cosu). So, = (1 ~ cosu)/(1 — cos p). Thus, the ancillary subspaces A(u) can

be represented parametrically as:
T = cos p(1 — cosu)/(1 — cos p),mz = sin p(1 — cosu)/(1 — cos p).

(Fig. 4.3 to be placed here)

Consider next the local coordinates associated with the test. In a neighborhood
of M the parabola can be regarded as the pair of two ancillary subspaces or pieces
of the curves A(-u) and A(u). We introduce a local coordinate system v in each of
these ancillary subspaces which is defined as the arc length from the intersecting

point of M and A(u). Then, from the formula for arc length,

vE [p[{m’(p)}2 + {n2/(0) }*1*/2dp,

where differentiation is w.r.t. p. Now,

—sin p(1 — cosu) 1—cosu
"71’(/’) = (1 —(COSp)2 and 772’(/’) = —-1 — COSp.

So,v = /p(l — cosu) [sin2p+ & _COSP)ZJI/de = \@/p [z_(l—ﬂ_] d

(1 —cosp)t 1 — cos p)3/2

5. Higher-order power comparison

For the chse of the two-sided alternatives, the test based on the MLE and the
LR test discussed above and also the LMP test are unconditional tests. Except for

the LMP test, which is optimal for all sample size§ in the sense of maximum local
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power, no small-sample property of the other two tests is known. However, using
standard results, e.g., following Amari (1985), we get the following results on the

deficiencies of the tests.

Result 5.1 The third order power loss of the LMP, MLE and the LR tests are

given by, respectively, at ¢ as,

Lit) = 178721 —1/(27) = I
Ly(t) = 1.787%(t)J%(t), and
Ls(t) = 1.7872¢(b)[1/2 — J()]%,

where 7 is the upper 100a/2% point of the standard normal distribution, #(+), and

£(t) = (t/2)[p(r — t) — ¢(r + )] and J(t) =1—t/[2r tanh tr].

Proof: This result follows from Theorems 6.6, 6.7, and 6.8 of Amari using v? =178

from Section 4.3 above.

6. Tests for p with £ unknown

When & is unknown, the principle of similarity or meaningful invariance does
not lead to any reduction and hence no unconditional useful test is available. One
approach, a very restrictive one, may be to use a conditional test (Mardia, p.143).
However, here, we show that an unconditional asymptotically optimal test, e.g.
Neyman'’s C,, test can be derived. Following the notations as in Neyman (1959), let
¢ = Inf(a, k). Then at pp = 0,4, = Ksina, s = cos o — A(k). Assume k < K < o0.
Then straightforward computations establish that all the conditions (i) - (v) for ¢,
and ¢, to be Cradmer functions, as stated in Definition 3 in Neyman, are satisfied.
Thus for testing Ho : = 0 against Hy : 4 > 0, the C,- test is given from Theorem

3 of Neyman as

Zs =3 {#u(0 %) — (e, )}/ VR0 (R) > T 6.1)
=1



Stochastic Modelling and Applications 31

where £ is any locally root n consistent estimator of x under Hy, oo(R) is the stan-
dard deviation of ¢, (e, &) — af¢,(a, k) under Hy and evaluated at x = % and ad is
the partial regression coefficient of ¢u on ¢.. One may, e.g., take & as the MLE of x
under Hy, i.e., & = Maz{0, A=1(C/n); C > 0}. Further, a? is seen to be 0 by direct
computation. In fact, condition (3) of Moran (1970), i.e. E(8%1/0udk) = 0 under
Hy, holds. Then, the numerator of Z reduces to & ¥ sin o; and thus o2 (k) reduces

to, o5(k) = Var,—o(ksina) = kA(k). Thus (6.1) reduces to the simple form,

Zp = \/Ezn:sin a;/(nA(R))Y? > 1. (6.2)

i=1
(6.2) involves computation of &. This may be avoided to give an even simpler but
nevertheless (asymptotically) equivalent test. Note that, 03 (k) = x2Eo(sin® @) and

i sin® @ /n is a consistent estimator of Eo(sin® ). Then (6.2) reduces to,

T, = isin ai/(zn: sin? ;)% > 7,
i=1 i=1
Ty, is equivalent to Z, in the sense that it has, by Slutsky’s theorem, the same
limiting distribution as that of Z,.
For any sequence u* = {un} such that p,/n — 7 the asymptotic value of the
power of the test is given by

T

1~ (1/v37) / " exp{—(t — oo (x)7)?/2}dt.

—00

Among all tests, T}¥, for Hy : p = 0 with asymptotic level of significance o, whatever
be the sequence of alternatives pu, > 0 with tn — po = 0, and whatever be the

fixed k > 0,

lim[ Power {Ty,(un,k)} — Power {Tjt(ptn,£)}] > 0.
The test T, is in this sense an asymptotically locally most powerful test.
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TABLE 4.1 CONDITIONAL POWER OF MP TESTS FOR
Ho:8=0VS Hy :ﬂ:ﬂl(a:.OE,n=7)
Br | §/r 1 2 3 4 5 6 7
2 .051763 | .053537 | .055161 | .056505 057627 | .058608 | .059496
4 .053587 | .057313 | .060801 | .063730 .066209 | .068408 | .070421
6 055471 | 061336 | .066948 | .071726 | .075824 .079499 | .082900
8 057415 | .065616 | .073634 | .080546 .086542 | .091977 | .097051
2 10 059416 | .070163 | .080888 | .090240 .098435 | .105930 | .112980
12 061475 | .074983 | .088738 | .010085 111566 | .121435 | .130776
14 .063589 | .080086 | .097213 | .011243 .125989 | .138555 | .150507
16 065758 | .085476 | .106335 | .125020 .141750 | .157336 | .172213
18 067978 | .091158 | .116128 | 138640 158882 | .177804 | .195904
20 070247 | .097136 | .126610 | .153321 177403 | .199960 | 221556
2 051763 | .053537 | .055161 .056505 | .057627 | .058608
4 -053588 | .057314 | .060801 | .063730 :066209 | .068408
6 055474 | .061340 | .066950 | .071727 076824 | .079499
8 057420 | .065626 | .073640 | .080548 086543 | .091977
4 10 059427 | .070181 | .080899 | .090243 098436 | .105930
12 061492 | .075014 | .088757 | .100861 111567 | ,121435
14 063614 | .080133 | .097241 | .112445 125991 | .138556
16 065793 | .085543 | .106378 .125Q33 | .141753 | .157337
18 068025 | 091252 | .116188 | ,138659 | .158886 177805
20 .070308 | .097261 | .126693 | .153346 177409 | .199961
-051762 | .053536 | .055161 | .056505 | .057627 | .058608
4 053587 | .057313 | 060801 | .063730 066209 | .068408
6 085475 | .061342 | .066951 | .071727 075824 | .079499
8 057424 | .065632 | .073643 | .080549 | .086543 | .001977
6 10 059434 | .070195 | .080906 | .090245 .098437 | .105930
12 061505 | .075038 | .088770 | .100865 111568 | .121435
14 .063635 | .080171 | .097264 | .112451 125992 | .138556
16 .065822 | .085600 | .106412 | .125043 141755 | 167337
18 .068065 | .091331 | .116237 | .138673 .158889 | .177805
20 070361 | .097370 | .126761 | .153366 177413 | 199962
2 051759 | .053531 | .055158 | .056504 057627 | .058608
4 053583 | .067306 | .060797 | .063729 | .066209 068408
6 -055471 | .061336 | .066948 | .071726 | .075824 | .079499
8 057424 | .065632 | .073643 | .080549 086543 | .091977
10 10 059440 | .070205 | .080912 | .000247 .098437 | .105930
12 061620 | .075065 | .088785 | .100869 111569 | .121436
14 063662 | .080220 | .097291 | .112459 125994 | .138556
16 065866 | .085680 | .106457 | .125055 141758 | .157338
18 068127 | .091451 | .116307 | .138692 158893 | .177806
20 070447 | .097539 | .126861 | .153395 177420 | .199963
2 051742 | .053507 | .055148 | .056502 057626 | .058608
4 .053553 | .057626 | .060779 | .063725 066208 | .068407
6 055433 | .061279 | .066923 | .071720 075822 | .079499
8 057383 | .065569 | 073615 | .080542 086542 | .091977
20 10 .059403 .07014@ .080885 | .090240 | .098436 | .105930
12 061492 | .075019 | .088765 | .100864 111568 | .121435
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TABLE 4.2 CUT-OFF POINTS, K
OF LMP TEST (a = .05)

n K

5 2.4654

6 2.7013

7 2.9156

8 3.1159

9 3.3038

10 | 34816

11 3.6509

12 3.8129

13 3.9686

14 4.1189

15 4.2638

TABLE 4.3 COMPARISON OF POWERS, ¢,
OF MP AND LMP TESTS.
MP test at Hy : § = !

Bt | min max ¢ LMP
r r test
2 | .0518 .0595 .0566
4 | .0536 .0704 0639
6 | .0555 .0829 0718
8 | .0574 .0971 .0805
10 | .0594 1130 .0900
12 | .0615 1308 .1002
14 | .0637 .1505 1112
16 | .0652 1722 1223
18 | .0682 1959 1354
l) 0705 2216 i 1487
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TABLE 4.4 COMPARISON OF POWERS OF LMP AND LR TESTS
n LMP LRT LMP LRT - LMP LRT
B - 7 7 20 20 30 30
0 0.050002 | 0.050001 | 0.050000 | 0.049999 | 0.049999 0.050001
2 0.056604 | 0.050383 | 0.061651 | 0.051171 | 0.064523 0.051796
4 0.063880 | 0.051531 | 0.075322 | 0.054703 | 0.082125 0.057213
6 0.071861 | 0.053454 | 0.091172 | 0.060639 | 0.103093 0.066339
8 0.080573 | 0.056163 | 0.109330 0.065046 0.12?641 0.079302
10 0.090037 | 0.059676 | 0.129882 | 0.080012 | 0.155882 0.096251
12 0.100266 | 0.064010 | 0.152862 | 0.093626 | 0.187808 0.117324
14 0.111266 | 0.069191 | 0.178248 | 0.109974 | 0.223277 0.142613
16 0.123035 | 0.075242 | 0.205953 | 0.129125 | 0.262006 0.172139
18 0.135561 | 0.082190 | 0.235826 | 0.151114 | 0.303574 0.205812
20 0.148825 | 0.090058 | 0.267656 | 0.175932 | 0.347441 0.243418
22 0.162796 | 0.098872 | 0.301173 | 0.203518 | 0.392971 0.284600
24 0.177435 | 0.108651 | 0.336058 | 0.233747 | 0.439460 0.328861
26 0.192693 | 0.119413 | 0.371956 | 0.266427 | 0.486182 0.375575
28 0.208513 | 0.131167 | 0.408487 | 0.301301 | 0.532416 0.424012
30 0.224829 | 0.143919 | 0.445260 | 0.338048 | 0.577490 0.473372
32 0.241568 | 0.157665 | 0.481888 | 0.376293 | 0.620804 0.522822
34 0.258653 | 0.172392 | 0.518001 | 0.415617 | 0.661857 0.571545
36 0.275999 | 0.188078 | 0.553257 | 0.455573 | 0.700258 0.618778
38 0.293519 | 0.204692 | 0.587354 | 0.495703 | 0.735735 0.663848
40 0.311123 | 0.222190 | 0.620032 | 0.535550 | 0.768128 0.706197
50 0.397281 | 0.320760 | 0.756537 | 0.716789 | 0.884737 0.867142
60 0.472919 | 0.429871 | 0.845433 | 0.846710 | 0.942207 0.948019
70 0.530505 | 0.537022 | 0.895801 | 0.923116 | 0.967118 0.948019
80 0.566025 | 0.631476 | 0.920332 | 0.962209 | 0.976938 0.991258
90 0.577970 | 0.707318 | 0.927567 | 0.980699 | 0.979516 0.994935
120 | 0.472919 | 0.829434 | 0.845433 | 0.995149 | 0.942207 0.996855
150 | 0.224829 | 0.863363 | 0.445260 | 0.996906 | 0.577490 0.997005
180 | 0.050002 | 0.869581 | 0.050000 | 0.997142 | 0.049999 0.997022
210 | 0.006020 | 0.863363 | 0.000874 | 0.996906 | 0.000264 0.997005
240 | 0.000813 | 0.829434 | 0.000011 | 0.995149 | 0.000001 0.996855
270 | 0.000348 | 0.707318 | 0.000002 | 0.980699 | 0.00000 0.994935
300 | 0.000813 | 0.429871 | 0.000011 | 0.846710 | 0.000001 0.948019

. 330 | 0.006020 | 0.143919 | 0.000874 | 0.338048 | 0.000264 0.473372
360 | 0.050002 | 0.050001 | 0.050000 | 0.049999 | 0.049999 0.050001
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Figure 2.1  The curved exponential fami_ly CN(8.1)
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Figure 2.2 The rigging ancillary submanifold R{u)
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Figure 4.1 Ancillary family and (uv) - cdurdinmes of the

locally most powsrful test . -
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Figure 4.2 Ancillary family and (u.v) - coordinales of the test
: based on the maximum likelihood estimator .

Figure 4.3 Ancillaty family and (4.v) - coordinates of the
likalihood ratio test.




